If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.5x^2+50=0
a = -0.5; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-0.5)·50
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10}{2*-0.5}=\frac{-10}{-1} =+10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10}{2*-0.5}=\frac{10}{-1} =-10 $
| 2v+7=9 | | 2x^2-8x-2*8=0 | | 3•x-2/5=8/5 | | 8^x=2=64^4x+1 | | 100/9,5-(4/9,5)q2=(-2/5)q1+100 | | -1/2x^2+50=0 | | 150-k=49k | | 62+2x+4+x=180 | | 2^(3x-5)=128 | | 13.02+0.12(x+3)=13.77-0.11x | | 3(7x)-2=(4-x) | | 0=(20-x)*(300+48*x) | | x=(20-x)*(300+68*x) | | 7x+5(-2x+4)=2 | | 3p^2-7p=0 | | x=x(16-2x) | | (5x+6)(5x+6)=0 | | 12x+3(-2x+6)=10 | | 75/8=w3/8 | | X+18x=180 | | 4+z=5 | | 93/8=3/8w | | 12=-16t^2+28t+2 | | 2.5x+.5x=2.5+4.5x | | 1/3u-3/2=-6/5 | | 3x=5=x+11 | | 2x6=52 | | 2c+(3c-4)=8c-4 | | -x/9=7 | | -2(x-3)+5x=15 | | 10=-2c=+22 | | x-8=158 |